Bioreactor landfills: experimental and field results

Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. This paper presents the results of an experimental study carried out to determine the effect of solid waste size, leachate recirculation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 2002, Vol.22 (1), p.7-17
1. Verfasser: Warith, Mostafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. This paper presents the results of an experimental study carried out to determine the effect of solid waste size, leachate recirculation and nutrient balance on the rate of municipal solid waste (MSW) biodegradation. Higher rates of MSW biodegradation eventually cause a reduction of the contaminant life span of the landfill and decrease in the cost of long term monitoring. The study indicated that the smaller the size of the MSW the faster the biodegradation rate of the waste. In addition, the paper presents the results of leachate recirculation on solid waste biodegradation in a full-scale landfill site, which is located in Nepean, Ontario, Canada. The leachate was recirculated into the landfilled solid waste for 8 years through infiltration lagoons. Similar results to those obtained in the laboratory scale experiments were noted. The average pH of the leachate in the early stages of recirculation was on the acidic range of the pH scale, however, the pH value was in the range of 7–8 after 2 years of leachate recirculation. The concentration of chloride remained fairly constant at about 1000 mg/l during the leachate recirculation period. A decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was observed. Recovery of landfill air space was also noted because of the enhanced subsidence and decomposition of the solid waste.
ISSN:0956-053X
1879-2456
DOI:10.1016/S0956-053X(01)00014-9