Sensitive and selective DNA probe based on “turn-on” photoluminescence of C-dots@RGO
In this study, highly hydrophilic and photoluminescent sheets of reduced graphene oxide decorated with carbon dots (C-dots@RGO), methylene blue (MB), and a probe DNA have been used for the detection of DNA. The photoluminescence of C-dots@RGO is quenched by MB, which is restored in the presence of a...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2014-11, Vol.406 (27), p.6917-6923 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, highly hydrophilic and photoluminescent sheets of reduced graphene oxide decorated with carbon dots (C-dots@RGO), methylene blue (MB), and a probe DNA have been used for the detection of DNA. The photoluminescence of C-dots@RGO is quenched by MB, which is restored in the presence of a target DNA. The combination of the C-dots@RGO, MB, and a DNA probe is selective for perfectly matched DNA over mismatched DNA, mainly because relative to single-stranded DNA, double-stranded DNA intercalates more strongly with MB, but interacts more weakly with RGO. In the presence of a target DNA, MB intercalates with the as-formed double-stranded DNA and is released from the surface of C-dots@RGO, leading to “turn-on” photoluminescence. The practicality of this assay has been validated by the determination of tumor suppressor gene BRCA1, with linearity over the concentration range from 25 to 250 nM and a limit of detection (LOD, at a signal-to-noise ratio of 3) of 14.6 nM. The C-dots@RGO probe provides higher specificity towards target DNA than towards common salts, carbohydrates, amino acids, and proteins found in real samples. Having the advantages of simplicity, cost-effectiveness, selectivity, and sensitivity, the DNA-P/C-dots@RGO–MB probe on microwells has been successfully employed for the detection of DNA, suggesting its potential for multiple analyses of DNA targets when various DNA probes are employed. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-014-7658-2 |