Fundamental Changes in In Situ Air Sparging Flow Patterns

Two types of gas-phase flow patterns have been discussed and observed in the in situ air sparging (ISAS) literature: bubble flow and air channels. A critical factor affecting the flow pattern at a given location is the grain size of the porous medium. Visualization experiments reported in the litera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground water monitoring & remediation 1999, Vol.19 (2), p.105-113
Hauptverfasser: Brooks, M C, Wise, W R, Annable, MD
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two types of gas-phase flow patterns have been discussed and observed in the in situ air sparging (ISAS) literature: bubble flow and air channels. A critical factor affecting the flow pattern at a given location is the grain size of the porous medium. Visualization experiments reported in the literature indicate that a change in the flow pattern occurs around 1 to 2 mm grain diameters, with air channels occurring below the transition size and bubbles above. Analysis of capillary and buoyancy forces suggests that for a given gas-liquid-solid system, there is a critical size that dictates the dominant force, and the dominant force will in turn dictate the flow pattern. The dominant forces, and consequently the two-phase flow patterns, were characterized using a Bond number modified with the porous media aspect ratio (pore throat to pore body ratio). Laboratory experiments were conducted to observe flow patterns as a function of porous media size and air flow rate. The experimental results and the modified Bond number analysis support the relationship of flow patterns to grain size reported in the literature.
ISSN:1069-3629
DOI:10.1111/j.1745-6592.1999.tb00211.x