An O−C (and light travel time) method suitable for application to large photometric databases

The standard method of studying period changes in variable stars is to study the timing residuals or O−C values of light-curve maxima or minima. The advent of photometric surveys for variability, covering large parts of the sky and stretching over years, has made available measurements of probably h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2014-10, Vol.444 (2), p.1486-1495
1. Verfasser: Koen, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The standard method of studying period changes in variable stars is to study the timing residuals or O−C values of light-curve maxima or minima. The advent of photometric surveys for variability, covering large parts of the sky and stretching over years, has made available measurements of probably hundreds of thousands of variable stars, observed at random phases. Simple methodology is described which can be used to quickly check such measurements of a star for indications of period changes. Effectively, the low-frequency periodogram of a first-order estimate of the O−C function is calculated. In the case of light travel time (LTT) effects, the projected orbital amplitude follows by robust regression of a sinusoid on the O−C. The results can be used as input into a full non-linear least-squares regression directly on the observations. Extensive simulations of LTT configurations are used to explore the sensitivity of results to various parameter values (period of the variable star and signal to noise of measurements; orbital period and amplitude; number and time baseline of observations). The methodology is applied to observations of three previously studied stars.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stu1514