Water quality improvement by natural plant-mineral composites and field temperatures of a eutrophic lake in South Korea
To improve the water quality of Shingal Reservoir, a eutrophic lake in South Korea, field tests were performed to assess the influence of water temperature on water quality improvement (WQI) ability of domestic plant-mineral composites (PMCs). Interestingly, Cyanobacterium was found to be dominant e...
Gespeichert in:
Veröffentlicht in: | Journal of environmental biology 2014-09, Vol.35 (5), p.807-813 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve the water quality of Shingal Reservoir, a eutrophic lake in South Korea, field tests were performed to assess the influence of water temperature on water quality improvement (WQI) ability of domestic plant-mineral composites (PMCs). Interestingly, Cyanobacterium was found to be dominant even in low-temperature seasons, especially winter leading to more effective for diatom growth. Factors such as phytoplankton, biological oxygen demand (BOD) and phosphorous showed high WQI over 70% at 20 degrees C, but declined to 40% at temperatures above 25 degrees C. WQI for Cyanobacteria decreased with increasing water temperature, whereas for diatoms WQI was 90% regardless of water temperature. Additionally, bacterial density and total nitrogen showed very low WQI without water temperature. Collectively, the results indicate that high water temperature decreased WQI ability of a PMC to control phytoplankton (Microcystis aeruginosa) and increased their ability to control diatoms. |
---|---|
ISSN: | 0254-8704 2394-0379 |