Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean

Early life stages of many marine organisms are being challenged by rising seawater temperature and CO₂ concentrations, but their physiological responses to these environmental changes still remain unclear. In the present study, we show that future predictions of ocean warming (+4°C) and acidificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2014-06, Vol.217 (Pt 12), p.2062-2070
Hauptverfasser: Pimentel, Marta S, Faleiro, Filipa, Dionísio, Gisela, Repolho, Tiago, Pousão-Ferreira, Pedro, Machado, Jorge, Rosa, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early life stages of many marine organisms are being challenged by rising seawater temperature and CO₂ concentrations, but their physiological responses to these environmental changes still remain unclear. In the present study, we show that future predictions of ocean warming (+4°C) and acidification (ΔpH=0.5 units) may compromise the development of early life stages of a highly commercial teleost fish, Solea senegalensis. Exposure to future conditions caused a decline in hatching success and larval survival. Growth, metabolic rates and thermal tolerance increased with temperature but decreased under acidified conditions. Hypercapnia and warming amplified the incidence of deformities by 31.5% (including severe deformities such as lordosis, scoliosis and kyphosis), while promoting the occurrence of oversized otoliths (109.3% increase). Smaller larvae with greater skeletal deformities and larger otoliths may face major ecophysiological challenges, which might potentiate substantial declines in adult fish populations, putting in jeopardy the species' fitness under a changing ocean.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.092635