Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit

We investigate the quantum anomalous Hall effect (QAHE) and related chiral transport in the millimeter-size (Cr(0.12)Bi(0.26)Sb(0.62))₂Te₃ films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e²/h is found to persist even when the film thickness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-09, Vol.113 (13), p.137201-137201
Hauptverfasser: Kou, Xufeng, Guo, Shih-Ting, Fan, Yabin, Pan, Lei, Lang, Murong, Jiang, Ying, Shao, Qiming, Nie, Tianxiao, Murata, Koichi, Tang, Jianshi, Wang, Yong, He, Liang, Lee, Ting-Kuo, Lee, Wei-Li, Wang, Kang L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the quantum anomalous Hall effect (QAHE) and related chiral transport in the millimeter-size (Cr(0.12)Bi(0.26)Sb(0.62))₂Te₃ films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e²/h is found to persist even when the film thickness is beyond the two-dimensional (2D) hybridization limit. Meanwhile, the Chern insulator-featured chiral edge conduction is manifested by the nonlocal transport measurements. In contrast to the 2D hybridized thin film, an additional weakly field-dependent longitudinal resistance is observed in the ten-quintuple-layer film, suggesting the influence of the film thickness on the dissipative edge channel in the QAHE regime. The extension of the QAHE into the three-dimensional thickness region addresses the universality of this quantum transport phenomenon and motivates the exploration of new QAHE phases with tunable Chern numbers. In addition, the observation of scale-invariant dissipationless chiral propagation on a macroscopic scale makes a major stride towards ideal low-power interconnect applications.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.113.137201