Improved serum- and feeder-free culture of mouse germline stem cells

Spermatogonial stem cells (SSCs) undergo self-renewal division, which can be recapitulated in vitro. Attempts to establish serum-free culture conditions for SSCs have met with limited success. Although we previously reported that SSCs can be cultured without serum on laminin-coated plates, the growt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2014-10, Vol.91 (4), p.88-88
Hauptverfasser: Kanatsu-Shinohara, Mito, Ogonuki, Narumi, Matoba, Shogo, Morimoto, Hiroko, Ogura, Atsuo, Shinohara, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spermatogonial stem cells (SSCs) undergo self-renewal division, which can be recapitulated in vitro. Attempts to establish serum-free culture conditions for SSCs have met with limited success. Although we previously reported that SSCs can be cultured without serum on laminin-coated plates, the growth rate and SSC concentration were relatively low, which made it inefficient for culturing large numbers of SSCs. In this study, we report on a novel culture medium that showed improved SSC maintenance. We used Iscove modified Dulbecco medium, supplemented with lipid mixture, fetuin, and knockout serum replacement. In the presence of glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), SSCs cultured on laminin-coated plates could proliferate for more than 5 mo and maintained normal karyotype and androgenetic DNA methylation patterns in imprinted genes. Germ cell transplantation showed that SSCs in the serum-free medium proliferated more actively than those in the serum-supplemented medium and that the frequency of SSCs was comparable between the two culture media. Cultured cells underwent germline transmission. Development of a new serum- and feeder-free culture method for SSCs will facilitate studies into the effects of microenvironments on self-renewal and will stimulate further improvements to derive SSC cultures from different animal species.
ISSN:1529-7268
DOI:10.1095/biolreprod.114.122317