Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya

Nests of a fungus-growing termite Macrotermes jeanneli discharge all their metabolic gases through a single outlet to the atmosphere. This made it possible to measure the production of metabolic gases, and the rates of water loss, for intact nests in the field. Rates of production of carbon dioxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tropical ecology 1997-07, Vol.13 (4), p.491-510
Hauptverfasser: Darlington, J. P. E. C., Zimmerman, P. R., Greenberg, J., Westberg, C., Bakwin, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nests of a fungus-growing termite Macrotermes jeanneli discharge all their metabolic gases through a single outlet to the atmosphere. This made it possible to measure the production of metabolic gases, and the rates of water loss, for intact nests in the field. Rates of production of carbon dioxide and methane from isolated nest components (different termite castes and intact fungus combs) were measured. Using previously published nest population data and fungus comb weights in relation to nest size, the expected gas production rates for intact nests were calculated. These estimates were compared with direct observations of the gaseous outflow from intact nests. The rates were in reasonable agreement, but some nests emitted excess carbon dioxide, probably produced by respiration of tree roots and non-termite soil organisms. Large nests may have a total gas outflow of 100,000 to 400,000 1 d–1 including 800 to 1500 1 d–1 of CO2 and 0.5 to 1.3 1 d–1 of CH4. Nests lose water at the rate of up, to 13 1 d–1 gross, but allowing for ambient humidity the net water loss was up to about 5 1 d–1. Some of this is metabolic water, but the larger proportion comes from the soil. Area-based estimates of gas production were made for this and two other species of Macrotermes, but they are not accurate because the field distribution and mound density are not adequately known.
ISSN:0266-4674
1469-7831
DOI:10.1017/S0266467400010671