Evidence for early induction of calmodulin gene expression in lymphocytes undergoing glucocorticoid-mediated apoptosis

Glucocorticoid treatment of certain lymphoma cell lines and thymocytes activates a self-destructive pathway of programmed cell death referred to as apoptosis. Calcium and calmodulin (CaM) may be important signals in the apoptotic cascade because an early event is a sustained elevation in cytosolic C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1991-10, Vol.266 (28), p.18423-18426
Hauptverfasser: DOWD, D. R, MACDONALD, P. N, KOMM, B. S, HAUSSLER, M. R, MIESFELD, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucocorticoid treatment of certain lymphoma cell lines and thymocytes activates a self-destructive pathway of programmed cell death referred to as apoptosis. Calcium and calmodulin (CaM) may be important signals in the apoptotic cascade because an early event is a sustained elevation in cytosolic Ca2+ and CaM inhibitors interfere with the death pathway. In the present study, expression of the CaM gene was examined during glucocorticoid-induced apoptosis in WEHI7.2 lymphocytes. Steady state levels of CaM mRNA were increased up to 10-fold following a 4-6-h exposure of WEHI7.2 cells to 10(-6) M dexamethasone. This increase was mediated through the glucocorticoid receptor since the response was not observed in WEHI7.418, a variant line which does not express active glucocorticoid receptor. Induction of CaM mRNA was dose-dependent and highly specific for glucocorticoids, as other steroids were unable to elicit the response. A stringent cell specificity was also observed. Pretreatment of WEHI7.2 lymphocytes with cycloheximide did not interfere with dexamethasone-dependent increases in CaM mRNA levels, and studies with actinomycin D demonstrated that the stability of the transcript was not altered by hormone, Finally, a calmodulin inhibitor elicited a protective effect on WEHI7.2 cells following glucocorticoid exposure. These results indicate that CaM mRNA levels were hormonally controlled in WEHI7.2 lymphocytes and support the putative involvement of CaM in glucocorticoid-induced apoptosis.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)55076-6