Polypeptide Thermogels as a Three Dimensional Culture Scaffold for Hepatogenic Differentiation of Human Tonsil-Derived Mesenchymal Stem Cells

Tonsil-derived mesenchymal stem cells (TMSCs) were investigated for hepatogenic differentiation in the 3D matrixes of poly­(ethylene glycol)-b-poly­(l-alanine) (PEG-L-PA) thermogel. The diblock polymer formed β-sheet based fibrous nanoassemblies in water, and the aqueous polymer solution undergoes s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-10, Vol.6 (19), p.17034-17043
Hauptverfasser: Kim, Seung-Jin, Park, Min Hee, Moon, Hyo Jung, Park, Jin Hye, Ko, Du Young, Jeong, Byeongmoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tonsil-derived mesenchymal stem cells (TMSCs) were investigated for hepatogenic differentiation in the 3D matrixes of poly­(ethylene glycol)-b-poly­(l-alanine) (PEG-L-PA) thermogel. The diblock polymer formed β-sheet based fibrous nanoassemblies in water, and the aqueous polymer solution undergoes sol-to-gel transition as the temperature increases in a concentration range of 5.0–8.0 wt %. The cell-encapsulated 3D matrix was prepared by increasing the temperature of the cell-suspended PEG-L-PA aqueous solution (6.0 wt %) to 37 °C. The gel modulus at 37 °C was about 1000 Pa, which was similar to that of decellularized liver tissue. Cell proliferation, changes in cell morphology, hepatogenic biomarker expressions, and hepatocyte-specific biofunctions were compared for the following 3D culture systems: TMSC-encapsulated thermogels in the absence of hepatogenic growth factors (protocol M), TMSC-encapsulated thermogels where hepatogenic growth factors were supplied from the medium (protocol MGF), and TMSC-encapsulated thermogels where hepatogenic growth factors were coencapsulated with TMSCs during the sol-to-gel transition (protocol GGF). The spherical morphology and size of the encapsulated cells were maintained in the M system during the 3D culture period of 28 days, whereas the cells changed their morphology and significant aggregation of cells was observed in the MGF and GGF systems. The hepatocyte-specific biomarker expressions and metabolic functions were negligible for the M system. However, hepatogenic genes of albumin, cytokeratin 18 (CK-18), and hepatocyte nuclear factor 4α (HNF 4α) were significantly expressed in both MGF and GGF systems. In addition, production of albumin and α-fetoprotein was also significantly observed in both MGF and GGF systems. The uptake of cardiogreen and low-density lipoprotein, typical metabolic functions of hepatocytes, was apparent for MGF and GGF. The above data indicate that the 3D culture system of PEG-L-PA thermogels provides cytocompatible microenvironments for hepatogenic differentiation of TMSCs. In particular, the successful results of the GGF system suggest that the PEG-L-PA thermogel can be a promising injectable tissue engineering system for liver tissue regeneration after optimizing the aqueous formulation of TMSCs, hepatogenic growth factors, and other biochemicals.
ISSN:1944-8244
1944-8252
DOI:10.1021/am504652y