Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions
In the developmental process of the early mammalian embryo, it is crucial to understand how the identical cells in the early embryo later develop different fates. Along with existing models, many recently discovered molecular, cellular and developmental factors play roles in cell position, cell pola...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2014-11, Vol.395 (1), p.73-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the developmental process of the early mammalian embryo, it is crucial to understand how the identical cells in the early embryo later develop different fates. Along with existing models, many recently discovered molecular, cellular and developmental factors play roles in cell position, cell polarity and transcriptional networks in cell fate regulation during preimplantation. A structuring process known as compaction provides the "start signal" for cells to differentiate and orchestrates the developmental cascade. The proper intercellular junctional complexes assembled between blastomeres act as a conducting mechanism governing cellular diversification. Here, we provide an overview of the diversification process during preimplantation development as it relates to intercellular junctional complexes. We also evaluate transcriptional differences between embryonic lineages according to cell- cell adhesion and the contributions of adhesion to lineage commitment. These series of processes indicate that proper cell fate specification in the early mammalian embryo depends on junctional interactions and communication, which play essential roles during early morphogenesis. |
---|---|
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1016/j.ydbio.2014.08.028 |