Interpulse Interval in Circulating Growth Hormone Patterns Regulates Sexually Dimorphic Expression of Hepatic Cytochrome P450
Plasma growth hormone (GH) profiles are sexually differentiated in many species and regulate the sex-dependence of peripubescent growth rates and liver function, including steroid hydroxylase cytochrome P450 expression, by mechanisms that are poorly understood. By use of an external pump to deliver...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1991-08, Vol.88 (15), p.6868-6872 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plasma growth hormone (GH) profiles are sexually differentiated in many species and regulate the sex-dependence of peripubescent growth rates and liver function, including steroid hydroxylase cytochrome P450 expression, by mechanisms that are poorly understood. By use of an external pump to deliver to hypophysectomized rats pulses of rat GH of varying frequency and amplitude, a critical element for liver discrimination between male and female GH patterns was identified. Liver expression of the male-specific steroid 2α(or16α)-hydroxylase P450, designated CYP2C11, was stimulated by GH at both physiological and nonphysiological pulse amplitudes, durations, and frequencies, provided that an interpulse interval of no detectable GH was maintained for at least 2.5 hr. This finding suggests that hepatocytes undergo an obligatory recovery period after stimulation by a GH pulse. This period may be required to reset a GH-activated intracellular signaling pathway or may relate to the short-term absence of GH receptors at the hepatocyte surface after a cycle of GH binding and receptor internalization. These requirements were distinguished from those necessary for the stimulation by GH of normal male growth rates in hypophysectomized rats, indicating that different GH responses and, perhaps, different GH-responsive tissues recognize distinct signaling elements in the sexually dimorphic patterns of circulating GH. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.88.15.6868 |