Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques

Soil respiration is an important component of the net carbon dioxide exchange between agricultural ecosystems and the atmosphere, and reliable estimates of soil respiration are required in carbon balance studies. Most of the field measurements of soil respiration reported in the literature have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of soil science 1997-05, Vol.77 (2), p.195-203
Hauptverfasser: Rochette, P, Ellert, B, Gregorich, E.G, Desjardins, R.L, Pattey, E, Lessard, R, Johnson, B.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil respiration is an important component of the net carbon dioxide exchange between agricultural ecosystems and the atmosphere, and reliable estimates of soil respiration are required in carbon balance studies. Most of the field measurements of soil respiration reported in the literature have been made using alkali traps. The use of portable CO 2 analysers in dynamic closed chamber systems is recent. The introduction of this new technique requires its evaluation against existing methods in order to compare new information with older data. Nine intercomparisons between dynamic systems and alkali traps were made. Measurements of F c,s obtained by both chambers showed a good agreement in all but two comparisons in which alkali trap measurements were lower than the dynamic chamber by about 22%. This first report of agreement between both techniques suggests that many measurements made in the past using alkali traps may be comparable to the measurements made more recently using the dynamic chambers. Analysis of the soil temperature and CO 2 concentration inside the alkali traps failed to explain why the alkali traps occasionally underestimated the fluxes. Soil respiration measured with a dynamic closed chamber were also compared to eddy-correlation measurements. The results did not reveal any consistent bias between techniques but the scattering was large. This dispersion is likely the result of the difference between the areas measured by the two techniques. Key words: Carbon dioxide, greenhouse gases, CO 2 flux, soil carbon
ISSN:0008-4271
1918-1841
DOI:10.4141/S96-110