The complex cell cycle of the dinoflagellate protoctist Crypthecodinium cohnii as studied in vivo and by cytofluorimetry

The complete cell cycle of the dinoflagellate Crypthecodinium cohniiBiecheler 1938 was observed in vivo in a synchronized heterogeneous population, after DAPI staining of DNA. In a given population, the relative nuclear DNA content in each class of cell was measured using a new numerical image-analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1991, Vol.100 (3), p.675-682
Hauptverfasser: BHAUD, Y, SALMON, J.-M, SOYER-GOBILLARD, M.-O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complete cell cycle of the dinoflagellate Crypthecodinium cohniiBiecheler 1938 was observed in vivo in a synchronized heterogeneous population, after DAPI staining of DNA. In a given population, the relative nuclear DNA content in each class of cell was measured using a new numerical image-analysis method that takes into account the total fluorescence intensity (FI), area (A) and shape factor (SF). The visible degree of synchronization of the population was determined from the number of cells with a nuclear content of IC DNA at ‘synchronization’, time 0. One method of synchronization (method 1), based on the adhesiveness of the cysts, gave no better than 50% synchronization of the population; method 2, based on swimming cells released from cysts cultured on solid medium, gave 73% of cells with the same nuclear DNA content. A scatter plot of data for FI versus A in the first few hours after time 0 showed that the actual degree of synchronization of the population was lower. The length of the C. cohnii cell cycle determined in vivo by light microscopy was 10, 16 or 24 h for vegetative cells giving two, four or eight daughter cells, respectively. Histograms based on the FI measurements showed that in an initially synchronized population observed for 20 h, the times for the first cell cycle were: G1 phase, 6 h; S phase, 1 h 30 min; G2+M, lh 30 min, with the release of vegetative cells occurring 1 or 2h after the end of cytokinesis. The times for the second cell cycle were G1+S, 3h; G2+M, 2h. FI and A taken together, suggested that the S phase is clearly restricted, as in higher eukaryotes. A and SF, taken together, showed that the large nuclear areas were always in cysts with two or four daughter cells. FI and SF, taken together, showed that the second S phase always occurred after completion of the first nuclear division. Our data concerning the course of the cell cycle in C. cohnii are compared with those from earlier studies, and the control of the number of daughter cells is discussed; this does not depend on the ploidy of the mother cell.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.100.3.675