Mechanisms of mutagenesis by exocyclic DNA adducts. Transfection of M13 viral DNA bearing a site-specific adduct shows that ethenocytosine is a highly efficient RecA-independent mutagenic noninstructional lesion
It is widely accepted that mutagenic DNA lesions fall into two categories: mispairing lesions hydrogen bond with an incorrect incoming base, generally do not stop replication, and possess high mutagenic efficiency without any requirement for induced functions; noninstructional lesions lack accessibl...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1991-09, Vol.30 (36), p.8736-8743 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is widely accepted that mutagenic DNA lesions fall into two categories: mispairing lesions hydrogen bond with an incorrect incoming base, generally do not stop replication, and possess high mutagenic efficiency without any requirement for induced functions; noninstructional lesions lack accessible template information, act as strong blocks to DNA replication (and are therefore toxic), and their mutagenic effects are SOS-dependent. Our recent results show that ethenocytosine (epsilon C), a noninstructional exocyclic DNA lesion induced by vinyl chloride, may have unusual mutagenic properties. To obtain more definitive experimental evidence for the observed effects, we have introduced a single epsilon C residue at a specific site of coliphage M13AB28 replicative form DNA by a "single-stranded linker-ligation" technique. The resulting DNA was purified and transfected into appropriate recA+ or recA- Escherichia coli host cells. The effect of epsilon C on survival was determined from transfection efficiency. Both the frequency and specificity of mutations induced by epsilon C were determined by direct sequence analysis of randomly picked progeny phage plaques. The results indicated that epsilon C has little effect on the survival of M13 DNA. Approximately 30% of the progeny phage obtained by transfecting epsilon C DNA had a base substitution mutation precisely at the lesion site. No such mutations were observed in progeny plaques obtained by transfecting the control DNA construct. All epsilon C-induced mutations were either C-to-T transitions or C-to-A transversions. Neither survival nor mutagenic efficiency was significantly affected in recA- host cells. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00100a004 |