Retron for the 67-Base Multicopy Single-Stranded DNA from Escherichia coli: A Potential Transposable Element Encoding Both Reverse Transcriptase and Dam Methylase Functions

The region (retron-Ec67) required for the biosynthesis of a branched-RNA-linked multicopy single-stranded DNA (msDNA-Ec67) from a clinical isolate of Escherichia coli was mapped at a position equivalent to 19 min on the K-12 chromosome. The element containing the retron consisted of a unique 34-kilo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1990-12, Vol.87 (23), p.9454-9458
Hauptverfasser: Hsu, Mei-Yin, Inouye, Masayori, Inouye, Sumiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The region (retron-Ec67) required for the biosynthesis of a branched-RNA-linked multicopy single-stranded DNA (msDNA-Ec67) from a clinical isolate of Escherichia coli was mapped at a position equivalent to 19 min on the K-12 chromosome. The element containing the retron consisted of a unique 34-kilobase sequence that was flanked by direct repeats of a 26-base-pair sequence found in the K-12 chromosomal DNA. This suggests that the 34-kilobase element was probably integrated into the E. coli genome by a mechanism related to transposition or phage integration. In the 34-kilobase sequence an open reading frame of 285 residues was found, which displays 44% sequence identity with the E. coli Dam methylase. Interestingly, there are three GATC sequences, the site of Dam methylation, in the promoter region of the gene for reverse transcriptase.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.23.9454