Terrestrial liming as a tool to mitigate acidification of Woods Lake, NY

The Soil Liming Model (SLiM) has been used to simulate lake and stream water quality response to different strategies for the application of limestone to subcatchment soils in the Woods Lake, NY watershed. Simulations using doses of 3, 10, or 30 t/ha forecast that a dose in excess of 10 t/ha must be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 1990-01, Vol.54 (special), p.509-527
Hauptverfasser: Brocksen, R W, Adams, T B, Sverdrup, H, Warfvinge, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Soil Liming Model (SLiM) has been used to simulate lake and stream water quality response to different strategies for the application of limestone to subcatchment soils in the Woods Lake, NY watershed. Simulations using doses of 3, 10, or 30 t/ha forecast that a dose in excess of 10 t/ha must be applied to discharge areas in order to sufficiently improve water quality in the lake. At 3 t/ha inlet stream water quality could support fish populations. As expected, treatment effectiveness is strongly influenced by subcatchment hydrologic flow paths. Where shallow flow predominates, soil liming provides a more effective tool for lake water quality improvement. In subcatchments drained primarily by ground water, the effect of liming on water quality is less pronounced albeit of longer duration. Based upon the results of these model simulations, the authors compare results of conventional lake liming to simulated watershed treatment predictions.
ISSN:0049-6979