Evidence for the Identity of Human Scatter Factor and Human Hepatocyte Growth Factor

Scatter factor (SF), a secretory protein of fibroblasts, dissociates and increases the motility of epithelial cells and may be involved in cell migration processes during embryogenesis and tumor progression. Hepatocyte growth factor (HGF), a protein isolated from serum of patients with liver failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-08, Vol.88 (16), p.7001-7005
Hauptverfasser: Weidner, K. Michael, Arakaki, Naokatu, Hartmann, Guido, Vandekerckhove, Joel, Weingart, Sabine, Rieder, Harald, Fonatsch, Christa, Tsubouchi, Hirohito, Hishida, Tadashi, Daikuhara, Yasushi, Birchmeier, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scatter factor (SF), a secretory protein of fibroblasts, dissociates and increases the motility of epithelial cells and may be involved in cell migration processes during embryogenesis and tumor progression. Hepatocyte growth factor (HGF), a protein isolated from serum of patients with liver failure, is a potent mitogen for hepatocytes and is thought to play a role in liver regeneration. Here we present structural and functional evidence that human SF and human HGF (and also the human lung fibroblast-derived mitogen) are identical proteins encoded by a single gene, since (i) no major difference could be found by protein sequencing, by cDNA analysis, and by immunological comparison and (ii) SF in fact acts as a hepatocyte growth factor-i.e., stimulates DNA synthesis of primary hepatocytes-whereas HGF exhibits scatter factor activity-i.e., dissociates and induces invasiveness of various epithelial cells. The human SF/HGF gene was localized to chromosome bands 7q11.2-21. These results have important consequences for further studies on the involvement of SF/HGF as a modulator of cellular growth and motility in embryonal, malignant, and regenerative processes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.16.7001