Cellular metabolism of 3'-azido-2',3'-dideoxyuridine with formation of 5'-O-diphosphohexose derivatives by previously unrecognized metabolic pathways for 2'-deoxyuridine analogs
3'-Azido-2',3'-dideoxyuridine (AzdU, CS-87) is a potent inhibitor of human immunodeficiency virus replication in human peripheral blood mononuclear cells (PBMC) with limited toxicity for human bone marrow cells (BMC). In the present study, metabolism of AzdU was investigated in human...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 1990-12, Vol.38 (6), p.929-938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 3'-Azido-2',3'-dideoxyuridine (AzdU, CS-87) is a potent inhibitor of human immunodeficiency virus replication in human peripheral
blood mononuclear cells (PBMC) with limited toxicity for human bone marrow cells (BMC). In the present study, metabolism of
AzdU was investigated in human PBMC and BMC after exposure of cells to 2 or 10 microM [3H]AzdU. 3'-Azido-2',3'-dideoxyuridine-5'-monophosphate
(AzdU-MP) was the predominant metabolite, representing approximately 55 to 65% of intracellular radioactivity in both PBMC
and BMC at all times. The AzdU-5'-diphosphate and -5'-triphosphate intracellular levels were 10- to 100-fold lower than the
AzdU-MP levels and, of note, AzdU-5'-triphosphate was not detected in human BMC. Using anion exchange chromatography, a new
peak of radioactivity, distinct from any known anabolites, was detected. This chromatographic peak was found to be resistant
to alkaline phosphatase but was hydrolyzed by 5'-phosphodiesterase, yielding AzdU-MP. Incubation of [3H]AzdU and D-[1-14C]glucose
in PBMC and BMC produced a double-labeled peak with the same retention time as the anabolite, suggesting formation of a hexose
derivative of AzdU. A novel high performance liquid chromatography method was developed that allowed for the separation of
nucleosides, nucleotides, and carbohydrate derivatives thereof. Using this highly specific method, the putative AzdU-hexose
actually was separated into two chromatographic peaks. These novel metabolites were identified as 3'-azido-2',3'-dideoxyuridine-5'-O-diphosphoglucose
and 3'-azido-2',3'-dideoxyuridine-5'-O-diphospho-N-acetylglucosamine. Following 48 hr of incubation with [3H] AzdU, as much
as 20 and 30% of these AzdU metabolites accumulated in PBMC and BMC, respectively. When AzdU was removed from the cell cultures,
intracellular AzdU diphosphohexose concentrations decayed in a monophasic manner, with an elimination half-life of 14.3 hr.
By 48 hr, levels of 0.3 pmol/10(6) cells were still detected, reflecting a gradual anabolism of these metabolites. Elimination
of AzdU-MP and AzdU-5'-diphosphate was characterized by a two-phase process, with a short initial half-life of 0.83 and 0.24
hr and a long terminal half-life of 14.10 and 8.24 hr, respectively. Similar diphosphohexoses of deoxyuridine (dUrd) were
also detected in human PBMC and BMC after exposure to [3H]dUrd, suggesting that dUrd derivatives are metabolized in a similar
manner. In summary, the discovery of novel metabolic pathways for dUrd analo |
---|---|
ISSN: | 0026-895X 1521-0111 |