Bioactive peptide design based on protein surface epitopes. A cyclic heptapeptide mimics CD4 domain 1 CC' loop and inhibits CD4 biological function
The interaction between CD4 and major histocompatibility complex class II proteins provides a critical co-receptor function for the activation of CD4(+) T cells implicated in the pathogenesis of a number of autoimmune diseases and transplantation responses. A small synthetic cyclic heptapeptide was...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1997-05, Vol.272 (18), p.12175-12180 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interaction between CD4 and major histocompatibility complex class II proteins provides a critical co-receptor function for the activation of CD4(+) T cells implicated in the pathogenesis of a number of autoimmune diseases and transplantation responses. A small synthetic cyclic heptapeptide was designed and shown by high resolution NMR spectroscopy to closely mimic the CD4 domain 1 CC' surface loop. This peptide effectively blocked stable CD4-major histocompatibility complex class II interaction, possessed significant immunosuppressive activity in vitro and in vivo, and strongly resisted proteolytic degradation. These results demonstrate the therapeutic potential of this peptide as a novel immunosuppressive agent and suggest a general strategy of drug design by using small conformationally constrained peptide mimics of protein surface epitopes to inhibit protein interactions and biological functions. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.272.18.12175 |