Functional and histological consequences of quinolinic and kainic acid-induced seizures on hippocampal somatostatin neurons
Changes in endogenous somatostatin after quinolinic and kainic acids were investigated by measuring somatostatin-like peaks by in vivo voltammetry and by assessing the distribution of somatostatin-positive neurons by immunocytochemistry. Kainic acid (0.19 nmol/0.5 μl) or quinolinic acid (120 nmol/0....
Gespeichert in:
Veröffentlicht in: | Neuroscience 1991, Vol.41 (1), p.127-135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Changes in endogenous somatostatin after quinolinic and kainic acids were investigated by measuring somatostatin-like peaks by
in vivo voltammetry and by assessing the distribution of somatostatin-positive neurons by immunocytochemistry. Kainic acid (0.19 nmol/0.5 μl) or quinolinic acid (120 nmol/0.5 μl) in doses inducing comparable electroencephalographic seizure patterns, were injected into the hippocampus of freely moving rats. Somatostatin-like peaks were measured every 6 min for 3 h by a carbon fiber electrode implanted in the proximity of the injection needle. Kainic acid kept somatostatin-like peaks significantly higher than saline from 48 min after the injection till the end of the recording. Somatostatin-like peaks were dramatically elevated by quinolinic acid, reaching a maximum of 482% 60 min after the injection. Three days later, administration of kainic acid resulted in selective degeneration of CA3 pyramidal neurons but did not affect the number of somatostatin-positive cells, while quinolinic acid induced cell loss in all pyramidal layers and complete degeneration of somatostatin-positive cells in the whole hippocampus.
Thus, the quantitative difference in somatostatin release in response to doses of kainic and quinolinic acids inducing comparable electroencephalographic seizure patterns was reflected in a substantial difference in the neurodegenerative consequences. In both models, the release of somatostatin in response to seizures may be interpreted as a “defense” mechanism aimed at reducing the spread of excitation in the tissue. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/0306-4522(91)90203-Z |