New derivatives of kanamycin B obtained by modifications and substitutions in position 6''. 1. Synthesis and microbiological evaluation
The clinical use of the potent, wide-spectrum aminoglycoside antibiotics is limited by oto- and nephrotoxicities. The latter is related to the binding of these polycationic drugs to negatively charged phospholipids and to the subsequent inhibition of lysosomal phospholipases. In order to explore the...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 1991-04, Vol.34 (4), p.1468-1475 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The clinical use of the potent, wide-spectrum aminoglycoside antibiotics is limited by oto- and nephrotoxicities. The latter is related to the binding of these polycationic drugs to negatively charged phospholipids and to the subsequent inhibition of lysosomal phospholipases. In order to explore the influence of a modification of the hydrophobic/hydrophilic balance at a specific site of an aminoglycoside, kanamycin B has been chemically modified in position 6" by substitution of the hydroxyl group with a halogen atom (or a pseudohalogen group), or an amino, an amido, a thioalkyl, or an alkoxy group, each series containing increasingly bulkier chains. Examination of the antibacterial activity of the synthesized compounds revealed a negative correlation between the size of the 6"-substituent and the antibacterial activity against kanamycin B sensitive Gram-positive and -negative organisms. Only derivatives with small substituents in position 6", namely chloro, bromo, azido, amino, methylcarbamido, acetamido, methylthio, methylsulfinyl, O-methyl, O-ethyl, and O-isopropyl, showed acceptable activity (geometric mean of minimum inhibitory concentrations for Gram-negative strains less than or equal to 2.5 mg/L; value for kanamycin B, 0.5 mg/L). In vitro toxicological evaluation of all derivatives and computer-aided conformational analysis of selected compounds inserted in a phosphatidylinositol monolayer are presented in the following paper in this issue. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm00108a035 |