Both SH2 Domains Are Involved in Interaction of SHP-1 with the Epidermal Growth Factor Receptor but Cannot Confer Receptor-directed Activity to SHP-1/SHP-2 Chimera
The previously demonstrated functional and physical interaction of the SH2 domain protein-tyrosine phosphatase SHP-1 with the epidermal growth factor (EGF) receptor (Tomic, S., Greiser, U., Lammers, R., Kharitonenkov, A., Imyanitov, E., Ullrich, A., and Böhmer, F. D. (1995) J. Biol. Chem. 270, 21277...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1997-02, Vol.272 (9), p.5966-5973 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The previously demonstrated functional and physical interaction of the SH2 domain protein-tyrosine phosphatase SHP-1 with the epidermal growth factor (EGF) receptor (Tomic, S., Greiser, U., Lammers, R., Kharitonenkov, A., Imyanitov, E., Ullrich, A., and Böhmer, F. D. (1995) J. Biol. Chem. 270, 21277-21284) was investigated with respect to the involved structural elements of SHP-1. Various mutants of SHP-1 were transiently expressed in 293 or COS-7 cells and analyzed for their capacity to associate with immobilized autophosphorylated EGF receptor in vitro and to dephosphorylate coexpressed EGF receptor in intact cells. Inactivating point mutation of the C-terminal SH2 domain reduced the association weakly, point mutation of the N-terminal SH2 domain reduced association strongly and the respective double mutation abolished association totally. The capacity of SHP-1 to dephosphorylate coexpressed EGF receptor was impaired by all point mutations. Truncation of the N-terminal or of both SH2 domains strongly reduced or abolished association, respectively, but the truncated SHP-1 derivatives still dephosphorylated coexpressed EGF receptor effectively.
Various chimeric protein-tyrosine phosphatases constructed from SHP-1 and the closely homologous SHP-2 dephosphorylated the EGF receptor when they contained the catalytic domain of SHP-1. As native SHP-2, the chimera lacked activity toward the receptor when they contained the catalytic domain of SHP-2, despite their capacity to associate with the receptor and to dephosphorylate an artificial phosphopeptide. We conclude that the differential interaction of SHP-1 and SHP-2 with the EGF receptor is due to the specificity of the respective catalytic domains rather than to the specificity of the SH2 domains. Functional interaction of native SHP-1 with the EGF receptor requires association mediated by both SH2 domains. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.272.9.5966 |