cAMP-dependent phosphorylation of two sites in the alpha subunit of the cardiac sodium channel
The voltage-sensitive Na+ channel is responsible for generating action potentials in the heart which are critical for coordinated cardiac muscle contraction. Cardiac Na+ channels are regulated by cAMP-dependent phosphorylation, but the sites of phosphorylation are not known. Using mammalian cells ex...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1996-11, Vol.271 (46), p.28837-28843 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The voltage-sensitive Na+ channel is responsible for generating action potentials in the heart which are critical for coordinated cardiac muscle contraction. Cardiac Na+ channels are regulated by cAMP-dependent phosphorylation, but the sites of phosphorylation are not known. Using mammalian cells expressing the rat cardiac Na+ channel (rH1) alpha subunit and site-specific antibodies, we have shown that the alpha subunit of rat heart Na+ channel is phosphorylated selectively by cAMP-dependent protein kinase (PKA) in vitro and in intact cells. Analysis of the sites of phosphorylation by two-dimensional phosphopeptide mapping and site-directed mutagenesis of fusion proteins revealed that the cardiac alpha subunit is phosphorylated selectively in vitro by PKA on Ser526 and Ser529 in the intracellular loop connecting homologous domains I and II (LI-II). These two residues were phosphorylated in intact cells expressing the rH1 alpha subunit when PKA was activated. Our results define a different pattern of phosphorylation of LI-II of cardiac and brain Na+ channels and implicate phosphorylation of Ser526 and Ser529 in the differential regulation of cardiac and brain Na+ channels by PKA. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.271.46.28837 |