Determination of the Transmembrane Topology of Yeast Sec61p, an Essential Component of the Endoplasmic Reticulum Translocation Complex

Sec61p is a highly conserved integral membrane protein that plays a role in the formation of a protein-conducting channel required for the translocation of polypeptides into, and across, the membrane of the endoplasmic reticulum. As a major step toward elucidating the structure of the endoplasmic re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-10, Vol.271 (41), p.25590-25597
Hauptverfasser: Wilkinson, Barrie M., Critchley, Angela J., Stirling, Colin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sec61p is a highly conserved integral membrane protein that plays a role in the formation of a protein-conducting channel required for the translocation of polypeptides into, and across, the membrane of the endoplasmic reticulum. As a major step toward elucidating the structure of the endoplasmic reticulum translocation apparatus, we have determined the transmembrane topology of Sec61p using a combination of C-terminal reporter-domain fusions and the in situ digestion of specifically inserted factor Xa protease cleavage sites. Our data indicate the presence of 10 transmembrane domains, including several with surprisingly limited hydrophobicity. Furthermore, we provide evidence for complex intramolecular interactions in which these weakly hydrophobic domains require C-terminal sequences for their correct topogenesis. The incorporation of sequences with limited hydrophobicity into the bilayer may play a vital role in the formation of an aqueous membrane channel required for the translocation of hydrophilic polypeptide chains.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.41.25590