Is there low-dimensional chaos in pulsatile secretion of parathyroid hormone in normal human subjects?

In many biological systems information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. The specificity of the biological response on activation by a hormone has so far been located within the inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 1994-01, Vol.266 (4), p.E653-E658
Hauptverfasser: Prank, K, Harms, H, Daemmig, M, Brabant, G, Mitschke, F, Hesch, R-D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many biological systems information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. The specificity of the biological response on activation by a hormone has so far been located within the interaction of a specific conformation of the ligand with the corresponding receptor structure. According to these classical explanations, the constant circulating hormonal pool described by the rate of its production and metabolic clearance is a major determinant of this interaction. Recently it has become apparent that hormone pulses contribute to this hormonal pool. Phase-space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition (in comparison to normal subjects) of a relatively quiet "low dynamic" secretory pattern in osteoporosis, and a "high dynamic" state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy humans exhibits characteristics of low-dimensional deterministic chaos. Our findings suggest that this indeed appears to be the case. PTH secretion thus seems to be a first example of a chaotic hormonal rhythm in human physiology. (DBO)
ISSN:0363-6143