The performance of novel compact heat exchangers with highly extended surfaces
The performance of highly extended surface heat exchangers has been evaluated in two heat pump applications: as the evaporator in a compression heat pump and as the absorber in an absorption heat transformer. Film heat transfer coefficients based on the equivalent plain tube area (p.t.a.), ranged fr...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 1996, Vol.16 (3), p.245-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 3 |
container_start_page | 245 |
container_title | Applied thermal engineering |
container_volume | 16 |
creator | Currie, J.S. Low, R.E. Pritchard, C.L. |
description | The performance of highly extended surface heat exchangers has been evaluated in two heat pump applications: as the evaporator in a compression heat pump and as the absorber in an absorption heat transformer. Film heat transfer coefficients based on the equivalent plain tube area (p.t.a.), ranged from 200 W m
−2 K
−1, for gas-liquid contact, to 3800 Wm
−2 K
−1, in the evaporation of a liquid stream. Another measure of the heat transfer characteristics of the exchangers were the ‘
UA
o’ values, which were significantly better than the theoretical values calculated for each operation. The experimental results ranged from 12 W K
−1 (gas) to 214 W K
−1 (evaporation), while the theoretical values were 1 W K
−1 (gas) and 43 K
−1 (evaporation). |
doi_str_mv | 10.1016/1359-4311(95)00072-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15712119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1359431195000720</els_id><sourcerecordid>206962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-121f2d4a425fbbee6ae0f5347556989e41eec22feb73483dab5f4b50434448823</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhj2ARCm8AYMnBEPA1yZZkFBFAamCpcyW4xw3RkkcbLfQtyeliJHpSL_-i86H0AUlN5TQ2S3lsswEp_SqlNeEkJxl5AhN_uQTdBrjOyGUFbmYoJdVA3iAYH3odG8Ae4t7v4UWG98N2iTcgE4Yvkyj-zWEiD9danDj1k27G-UEfQ01jptgtYF4ho6tbiOc_94pels8rOZP2fL18Xl-v8wM5zJllFHLaqEFk7aqAGYaiJVc5FLOyqIEQQEMYxaqnIuC17qSVlSSCC6EKArGp-jy0DsE_7GBmFTnooG21T34TVRU5uMGLUejOBhN8DEGsGoIrtNhpyhRe2BqT0btyahSqh9gioyxu0MMxie2DoKKxsHIp3YBTFK1d_8XfAMJtHRG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15712119</pqid></control><display><type>article</type><title>The performance of novel compact heat exchangers with highly extended surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Currie, J.S. ; Low, R.E. ; Pritchard, C.L.</creator><creatorcontrib>Currie, J.S. ; Low, R.E. ; Pritchard, C.L.</creatorcontrib><description>The performance of highly extended surface heat exchangers has been evaluated in two heat pump applications: as the evaporator in a compression heat pump and as the absorber in an absorption heat transformer. Film heat transfer coefficients based on the equivalent plain tube area (p.t.a.), ranged from 200 W m
−2 K
−1, for gas-liquid contact, to 3800 Wm
−2 K
−1, in the evaporation of a liquid stream. Another measure of the heat transfer characteristics of the exchangers were the ‘
UA
o’ values, which were significantly better than the theoretical values calculated for each operation. The experimental results ranged from 12 W K
−1 (gas) to 214 W K
−1 (evaporation), while the theoretical values were 1 W K
−1 (gas) and 43 K
−1 (evaporation).</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/1359-4311(95)00072-0</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>absorber ; Evaporation ; evaporator ; Heat exchangers ; Heat transfer ; Intensification ; Q1 ; turbulence promoter</subject><ispartof>Applied thermal engineering, 1996, Vol.16 (3), p.245-254</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-121f2d4a425fbbee6ae0f5347556989e41eec22feb73483dab5f4b50434448823</citedby><cites>FETCH-LOGICAL-c335t-121f2d4a425fbbee6ae0f5347556989e41eec22feb73483dab5f4b50434448823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/1359431195000720$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Currie, J.S.</creatorcontrib><creatorcontrib>Low, R.E.</creatorcontrib><creatorcontrib>Pritchard, C.L.</creatorcontrib><title>The performance of novel compact heat exchangers with highly extended surfaces</title><title>Applied thermal engineering</title><description>The performance of highly extended surface heat exchangers has been evaluated in two heat pump applications: as the evaporator in a compression heat pump and as the absorber in an absorption heat transformer. Film heat transfer coefficients based on the equivalent plain tube area (p.t.a.), ranged from 200 W m
−2 K
−1, for gas-liquid contact, to 3800 Wm
−2 K
−1, in the evaporation of a liquid stream. Another measure of the heat transfer characteristics of the exchangers were the ‘
UA
o’ values, which were significantly better than the theoretical values calculated for each operation. The experimental results ranged from 12 W K
−1 (gas) to 214 W K
−1 (evaporation), while the theoretical values were 1 W K
−1 (gas) and 43 K
−1 (evaporation).</description><subject>absorber</subject><subject>Evaporation</subject><subject>evaporator</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Intensification</subject><subject>Q1</subject><subject>turbulence promoter</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhj2ARCm8AYMnBEPA1yZZkFBFAamCpcyW4xw3RkkcbLfQtyeliJHpSL_-i86H0AUlN5TQ2S3lsswEp_SqlNeEkJxl5AhN_uQTdBrjOyGUFbmYoJdVA3iAYH3odG8Ae4t7v4UWG98N2iTcgE4Yvkyj-zWEiD9danDj1k27G-UEfQ01jptgtYF4ho6tbiOc_94pels8rOZP2fL18Xl-v8wM5zJllFHLaqEFk7aqAGYaiJVc5FLOyqIEQQEMYxaqnIuC17qSVlSSCC6EKArGp-jy0DsE_7GBmFTnooG21T34TVRU5uMGLUejOBhN8DEGsGoIrtNhpyhRe2BqT0btyahSqh9gioyxu0MMxie2DoKKxsHIp3YBTFK1d_8XfAMJtHRG</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Currie, J.S.</creator><creator>Low, R.E.</creator><creator>Pritchard, C.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1996</creationdate><title>The performance of novel compact heat exchangers with highly extended surfaces</title><author>Currie, J.S. ; Low, R.E. ; Pritchard, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-121f2d4a425fbbee6ae0f5347556989e41eec22feb73483dab5f4b50434448823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>absorber</topic><topic>Evaporation</topic><topic>evaporator</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Intensification</topic><topic>Q1</topic><topic>turbulence promoter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Currie, J.S.</creatorcontrib><creatorcontrib>Low, R.E.</creatorcontrib><creatorcontrib>Pritchard, C.L.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Currie, J.S.</au><au>Low, R.E.</au><au>Pritchard, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The performance of novel compact heat exchangers with highly extended surfaces</atitle><jtitle>Applied thermal engineering</jtitle><date>1996</date><risdate>1996</risdate><volume>16</volume><issue>3</issue><spage>245</spage><epage>254</epage><pages>245-254</pages><issn>1359-4311</issn><abstract>The performance of highly extended surface heat exchangers has been evaluated in two heat pump applications: as the evaporator in a compression heat pump and as the absorber in an absorption heat transformer. Film heat transfer coefficients based on the equivalent plain tube area (p.t.a.), ranged from 200 W m
−2 K
−1, for gas-liquid contact, to 3800 Wm
−2 K
−1, in the evaporation of a liquid stream. Another measure of the heat transfer characteristics of the exchangers were the ‘
UA
o’ values, which were significantly better than the theoretical values calculated for each operation. The experimental results ranged from 12 W K
−1 (gas) to 214 W K
−1 (evaporation), while the theoretical values were 1 W K
−1 (gas) and 43 K
−1 (evaporation).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/1359-4311(95)00072-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 1996, Vol.16 (3), p.245-254 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_15712119 |
source | Elsevier ScienceDirect Journals |
subjects | absorber Evaporation evaporator Heat exchangers Heat transfer Intensification Q1 turbulence promoter |
title | The performance of novel compact heat exchangers with highly extended surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20performance%20of%20novel%20compact%20heat%20exchangers%20with%20highly%20extended%20surfaces&rft.jtitle=Applied%20thermal%20engineering&rft.au=Currie,%20J.S.&rft.date=1996&rft.volume=16&rft.issue=3&rft.spage=245&rft.epage=254&rft.pages=245-254&rft.issn=1359-4311&rft_id=info:doi/10.1016/1359-4311(95)00072-0&rft_dat=%3Cproquest_cross%3E206962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15712119&rft_id=info:pmid/&rft_els_id=1359431195000720&rfr_iscdi=true |