Covariance Intersection Fusion Robust Time-Varying Kalman Filter for Two-Sensor System with Uncertain Noise Variances

This paper investigates the problem of designing covariance intersection fusion robust time-varying Kalman filter for two-sensor time-varying system with uncertain noise variances. Using the minimax robust estimation principle, the local and covariance intersection (CI) fusion robust time-varying Ka...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-12, Vol.475-476 (Sensors, Measurement and Intelligent Materials II), p.470-475
Hauptverfasser: Deng, Zi Li, Nie, Gui Huan, Zhang, Peng, Qi, Wen Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the problem of designing covariance intersection fusion robust time-varying Kalman filter for two-sensor time-varying system with uncertain noise variances. Using the minimax robust estimation principle, the local and covariance intersection (CI) fusion robust time-varying Kalman filters are presented based on the worst-case conservative system with the conservative upper bounds of noise variances. Their robustness is proved based on the proposed Lyapunov equation, and the robust accuracy of time-varying CI fuser is higher than that of each local robust time-varying Kalman filter. A two-sensor tracking system simulation verifies the robustness and robust accuracy relations.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.475-476.470