Covariance Intersection Fusion Robust Time-Varying Kalman Filter for Two-Sensor System with Uncertain Noise Variances
This paper investigates the problem of designing covariance intersection fusion robust time-varying Kalman filter for two-sensor time-varying system with uncertain noise variances. Using the minimax robust estimation principle, the local and covariance intersection (CI) fusion robust time-varying Ka...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-12, Vol.475-476 (Sensors, Measurement and Intelligent Materials II), p.470-475 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the problem of designing covariance intersection fusion robust time-varying Kalman filter for two-sensor time-varying system with uncertain noise variances. Using the minimax robust estimation principle, the local and covariance intersection (CI) fusion robust time-varying Kalman filters are presented based on the worst-case conservative system with the conservative upper bounds of noise variances. Their robustness is proved based on the proposed Lyapunov equation, and the robust accuracy of time-varying CI fuser is higher than that of each local robust time-varying Kalman filter. A two-sensor tracking system simulation verifies the robustness and robust accuracy relations. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.475-476.470 |