Online State of Charge Estimation for Battery of Electric Vehicle Using Sigma-Points Kalman Filters
An accurate state-of-charge (SOC) estimation of the hybrid electric vehicle (HEV) and electric vehicle (EV) battery pack is a difficult task to be performed online in a vehicle because of the noisy and low accurate measurements and the wide operating conditions in which the vehicle battery can opera...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-09, Vol.427-429 (Mechanical Engineering, Industrial Electronics and Information Technology Applications in Industry), p.824-829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An accurate state-of-charge (SOC) estimation of the hybrid electric vehicle (HEV) and electric vehicle (EV) battery pack is a difficult task to be performed online in a vehicle because of the noisy and low accurate measurements and the wide operating conditions in which the vehicle battery can operate. A Sigma-points Kalman Filters (SPKF) algorithm based on an improved Lithium battery cell model to estimate the SOC of a Lithium battery cell is proposed in this paper. The simulation and experiment results show the effectiveness and ease of implementation of the proposed technique. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.427-429.824 |