Photolithographic patterning of alkoxy substituted poly(p-phenylenevinylene)s from xanthate precursors

Conducting polymers are seeing ever-increased use in electronic and optoelectronic applications. While a variety of techniques are available to pattern conducting polymers, the demand for low cost, high throughput, and good spatial resolution continues to drive research efforts in this area. We have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2013-01, Vol.1 (7), p.1428-1433
Hauptverfasser: Johnson, Ross S., Wheeler, David R., Dirk, Shawn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conducting polymers are seeing ever-increased use in electronic and optoelectronic applications. While a variety of techniques are available to pattern conducting polymers, the demand for low cost, high throughput, and good spatial resolution continues to drive research efforts in this area. We have previously developed a method to pattern poly(p-phenylenevinylene) (PPV) using contact photolithography. Here, the synthesis, characterization, and photopatterning of alkoxy substituted PPVs (a much more commonly utilized derivative) is presented. Utilizing a photoacid generator, the polymer systems are demonstrated to pattern to one micron spatial resolution. The patterning process is demonstrated to have little effect on the polymers properties as the materials retain good optical characteristics and high conductivities upon doping.
ISSN:2050-7526
2050-7534
DOI:10.1039/c2tc00599a