Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin

Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-12, Vol.471 (Noise, Vibration and Comfort), p.40-44
Hauptverfasser: Junoh, Ahmad Kadri, Mohd Nopiah, Zulkifli, Ariffin, Ahmad Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue Noise, Vibration and Comfort
container_start_page 40
container_title Applied Mechanics and Materials
container_volume 471
creator Junoh, Ahmad Kadri
Mohd Nopiah, Zulkifli
Ariffin, Ahmad Kamal
description Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes.
doi_str_mv 10.4028/www.scientific.net/AMM.471.40
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567116791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567116791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-b9a690eb54e6725be042241d076089d9e44c4e6db4fcc92c6082ef74781af8503</originalsourceid><addsrcrecordid>eNqNkV9LHDEUxYNtof7pdwiUQl9mTWYySeZByrK4rbDqSyu-SMhkbjQ6JmuSdfDbG13B0qc-Xbjn3HsP94fQN0pmjNTycJqmWTIOfHbWmZmHfDg_PZ0xQYu-g3Yp53UlmKw_oL2GNEK2XUMuP74KpOqahn9GeyndEsIZZXIXXc3X69EZnV3wOFi8BBiqZYiTjgM-g03UYyl5CvEuYRsiXow6JWefnL_GcxM2KTuT8AoeYUzYeXwBN86MgBe6d_4AfbJ6TPDlre6jP8vj34tf1er858livqpMI3mu-k7zjkDfMuCibnsgrK4ZHYjgRHZDB4yZIg09s8Z0tSndGqxgQlJtZUuaffR9u3cdw8MGUlb3LhkYR-2hRFS05YJSLjparF__sd6GTfQlnaKMC9HK8rTiOtq6TAwpRbBqHd29jk-KEvVCQhUS6p2EKiRUIaEKiaKX-R_b-Ry1TxnMzV9n_mvDM2uml6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467758785</pqid></control><display><type>article</type><title>Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin</title><source>Scientific.net Journals</source><creator>Junoh, Ahmad Kadri ; Mohd Nopiah, Zulkifli ; Ariffin, Ahmad Kamal</creator><creatorcontrib>Junoh, Ahmad Kadri ; Mohd Nopiah, Zulkifli ; Ariffin, Ahmad Kamal</creatorcontrib><description>Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 303785930X</identifier><identifier>ISBN: 9783037859308</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.471.40</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Acoustics ; Automobiles ; Automotive engineering ; Cabins ; Classification ; Mathematical models ; Neural networks ; Noise</subject><ispartof>Applied Mechanics and Materials, 2013-12, Vol.471 (Noise, Vibration and Comfort), p.40-44</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-b9a690eb54e6725be042241d076089d9e44c4e6db4fcc92c6082ef74781af8503</citedby><cites>FETCH-LOGICAL-c386t-b9a690eb54e6725be042241d076089d9e44c4e6db4fcc92c6082ef74781af8503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2846?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Junoh, Ahmad Kadri</creatorcontrib><creatorcontrib>Mohd Nopiah, Zulkifli</creatorcontrib><creatorcontrib>Ariffin, Ahmad Kamal</creatorcontrib><title>Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin</title><title>Applied Mechanics and Materials</title><description>Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes.</description><subject>Acoustics</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Cabins</subject><subject>Classification</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>303785930X</isbn><isbn>9783037859308</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkV9LHDEUxYNtof7pdwiUQl9mTWYySeZByrK4rbDqSyu-SMhkbjQ6JmuSdfDbG13B0qc-Xbjn3HsP94fQN0pmjNTycJqmWTIOfHbWmZmHfDg_PZ0xQYu-g3Yp53UlmKw_oL2GNEK2XUMuP74KpOqahn9GeyndEsIZZXIXXc3X69EZnV3wOFi8BBiqZYiTjgM-g03UYyl5CvEuYRsiXow6JWefnL_GcxM2KTuT8AoeYUzYeXwBN86MgBe6d_4AfbJ6TPDlre6jP8vj34tf1er858livqpMI3mu-k7zjkDfMuCibnsgrK4ZHYjgRHZDB4yZIg09s8Z0tSndGqxgQlJtZUuaffR9u3cdw8MGUlb3LhkYR-2hRFS05YJSLjparF__sd6GTfQlnaKMC9HK8rTiOtq6TAwpRbBqHd29jk-KEvVCQhUS6p2EKiRUIaEKiaKX-R_b-Ry1TxnMzV9n_mvDM2uml6A</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Junoh, Ahmad Kadri</creator><creator>Mohd Nopiah, Zulkifli</creator><creator>Ariffin, Ahmad Kamal</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin</title><author>Junoh, Ahmad Kadri ; Mohd Nopiah, Zulkifli ; Ariffin, Ahmad Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-b9a690eb54e6725be042241d076089d9e44c4e6db4fcc92c6082ef74781af8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Cabins</topic><topic>Classification</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junoh, Ahmad Kadri</creatorcontrib><creatorcontrib>Mohd Nopiah, Zulkifli</creatorcontrib><creatorcontrib>Ariffin, Ahmad Kamal</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junoh, Ahmad Kadri</au><au>Mohd Nopiah, Zulkifli</au><au>Ariffin, Ahmad Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>471</volume><issue>Noise, Vibration and Comfort</issue><spage>40</spage><epage>44</epage><pages>40-44</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>303785930X</isbn><isbn>9783037859308</isbn><abstract>Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.471.40</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-12, Vol.471 (Noise, Vibration and Comfort), p.40-44
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1567116791
source Scientific.net Journals
subjects Acoustics
Automobiles
Automotive engineering
Cabins
Classification
Mathematical models
Neural networks
Noise
title Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Feed-Forward%20Neural%20Networks%20for%20Classifying%20Acoustics%20Levels%20in%20Vehicle%20Cabin&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Junoh,%20Ahmad%20Kadri&rft.date=2013-12-01&rft.volume=471&rft.issue=Noise,%20Vibration%20and%20Comfort&rft.spage=40&rft.epage=44&rft.pages=40-44&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=303785930X&rft.isbn_list=9783037859308&rft_id=info:doi/10.4028/www.scientific.net/AMM.471.40&rft_dat=%3Cproquest_cross%3E1567116791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467758785&rft_id=info:pmid/&rfr_iscdi=true