Application of Feed-Forward Neural Networks for Classifying Acoustics Levels in Vehicle Cabin
Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmar...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-12, Vol.471 (Noise, Vibration and Comfort), p.40-44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.471.40 |