Machine Learning Tools in Machinery Faults Diagnosis: A Review
Machinery faults can be detected by various signal processing tools; however, they require human expertise to achieve maximum success. Machine learning tools can help to achieve automatic machinery-faults diagnosis. This paper provides a brief review of the most common machine learning tools.
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-06, Vol.575 (Materials Engineering and Automatic Control III), p.833-836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machinery faults can be detected by various signal processing tools; however, they require human expertise to achieve maximum success. Machine learning tools can help to achieve automatic machinery-faults diagnosis. This paper provides a brief review of the most common machine learning tools. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.575.833 |