Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure

In this paper, we deal with approximate solutions in vector-optimization problems with respect to a variable order structure. In the case of exact solutions of a vector optimization problem, especially in the variable order case, authors use a cone or a pointed convex cone-valued map in order to des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2014-08, Vol.162 (2), p.605-632
1. Verfasser: Soleimani, Behnam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deal with approximate solutions in vector-optimization problems with respect to a variable order structure. In the case of exact solutions of a vector optimization problem, especially in the variable order case, authors use a cone or a pointed convex cone-valued map in order to describe the solution concepts but in this paper, we use a set-valued map and this map is not a (pointed convex) cone-valued map necessarily. We characterize these solution concepts by a general scalarization method by means of nonlinear functionals. In the last section, an extension of Ekeland’s variational principle for a vector optimization problem with a variable order structure is given.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-014-0535-5