Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure
In this paper, we deal with approximate solutions in vector-optimization problems with respect to a variable order structure. In the case of exact solutions of a vector optimization problem, especially in the variable order case, authors use a cone or a pointed convex cone-valued map in order to des...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2014-08, Vol.162 (2), p.605-632 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we deal with approximate solutions in vector-optimization problems with respect to a variable order structure. In the case of exact solutions of a vector optimization problem, especially in the variable order case, authors use a cone or a pointed convex cone-valued map in order to describe the solution concepts but in this paper, we use a set-valued map and this map is not a (pointed convex) cone-valued map necessarily. We characterize these solution concepts by a general scalarization method by means of nonlinear functionals. In the last section, an extension of Ekeland’s variational principle for a vector optimization problem with a variable order structure is given. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-014-0535-5 |