Electronically tunable anion-π interactions in pyrylium complexes: experimental and theoretical studies

Noncovalent interactions of anions with electron-deficient aromatic rings that have been studied so far involve non-heteroaromatic or nitrogen-based heteroaromatic systems. Here we report the first case of an organic oxygenated aromatic system, in particular the tri-aryl-pyrylium tetrafluoroborate s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-09, Vol.16 (34), p.18442-18453
Hauptverfasser: Franconetti, Antonio, Contreras-Bernal, Lidia, Jatunov, Sorel, Gómez-Guillén, Manuel, Angulo, Manuel, Prado-Gotor, Rafael, Cabrera-Escribano, Francisca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noncovalent interactions of anions with electron-deficient aromatic rings that have been studied so far involve non-heteroaromatic or nitrogen-based heteroaromatic systems. Here we report the first case of an organic oxygenated aromatic system, in particular the tri-aryl-pyrylium tetrafluoroborate system, for which noncovalent anion-π interactions of the pyrylium cation with the tetrafluoroborate anion have been experimentally detected and demonstrated by means of (19)F NMR spectroscopy in solution. A series of pyrylium tetrafluoroborate salts were synthesized in the presence of BF3·Et2O, by direct reaction of 4-substituted benzaldehydes with 4-substituted acetophenones or via the previously obtained chalcone of the less reactive ketone. Correlations of (19)F NMR chemical shifts of tetrafluoroborate anion for most of the synthesized tri-arylpyrylium tetrafluoroborate complexes with both the pyrylium cation molecular weight and the standard substituent Hammett constants, demonstrate anion-π(+) interaction to act between the polyatomic anion BF4(-) and the pyrylium aromatic system. DFT calculations reveal that an additional (C-H)(+)-anion hydrogen bond involving the H(5) of pyrylium ring exists for these fluorescent dyes that show a tunable cup-to-cap shape cavity. The strong fluorescence emission observed for some representative pyrylium tetrafluoroborates described herein, makes them a promising class of tunable emission wavelength dyes for laser technology applications.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp01977f