A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline

We propose that aromatic nitro and amine compounds undergo photochemical reductive and oxidative coupling, respectively, to specifically produce azobenzene derivatives which exhibit characteristic Raman signals related to the azo group. A photoinduced charge transfer model is presented to explain th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-10, Vol.14 (37), p.12919-12929
Hauptverfasser: ZHAO, Liu-Bin, HUANG, Yi-Fan, LIU, Xiu-Min, ANEMA, Jason R, WU, De-Yin, BIN REN, TIAN, Zhong-Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose that aromatic nitro and amine compounds undergo photochemical reductive and oxidative coupling, respectively, to specifically produce azobenzene derivatives which exhibit characteristic Raman signals related to the azo group. A photoinduced charge transfer model is presented to explain the transformations observed in para-substituted ArNO(2) and ArNH(2) on nanostructured silver due to the surface plasmon resonance effect. Theoretical calculations show that the initial reaction takes place through excitation of an electron from the filled level of silver to the lowest unoccupied molecular orbital (LUMO) of an adsorbed ArNO(2) molecule, and from the highest occupied molecular orbital (HOMO) of an adsorbed ArNH(2) molecule to the unoccupied level of silver, during irradiation with visible light. The para-substituted ArNO(2)(-)˙ and ArNH(2)(+)˙ surface species react further to produce the azobenzene derivatives. Our results may provide a new strategy for the syntheses of aromatic azo dyes from aromatic nitro and amine compounds based on the use of nanostructured silver as a catalyst.
ISSN:1463-9076
1463-9084
DOI:10.1039/c2cp41502j