Germanium–graphene composite anode for high-energy lithium batteries with long cycle life

The high-energy lithium ion battery is an ideal power source for electric vehicles and grid-scale energy storage applications. Germanium is a promising anode material for lithium ion batteries due to its high specific capacity, but still suffers from poor cyclability. Here, we report a facile prepar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2013-01, Vol.1 (5), p.1821-1826
Hauptverfasser: Ren, Jian-Guo, Wu, Qi-Hui, Tang, Hao, Hong, Guo, Zhang, Wenjun, Lee, Shuit-Tong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high-energy lithium ion battery is an ideal power source for electric vehicles and grid-scale energy storage applications. Germanium is a promising anode material for lithium ion batteries due to its high specific capacity, but still suffers from poor cyclability. Here, we report a facile preparation of a germanium-graphene nanocomposite using a low-pressure thermal evaporation approach, by which crystalline germanium particles are uniformly deposited on graphene surfaces or embedded into graphene sheets. The nanocomposite exhibits a high Coulombic efficiency of 80.4% in the first cycle and a capacity retention of 84.9% after 400 full cycles in a half cell, along with high utilization of germanium in the composite and high rate capability. These outstanding properties are attributed to the monodisperse distribution of high-quality germanium particles in a flexible graphene framework. This preparation approach can be extended to other active elements that can be easily evaporated (e.g., sulfur, phosphorus) for the preparation of graphene-based composites for lithium ion battery applications.
ISSN:2050-7488
2050-7496
DOI:10.1039/C2TA01286C