A Class of Fejér Convergent Algorithms, Approximate Resolvents and the Hybrid Proximal-Extragradient Method

A new framework for analyzing Fejér convergent algorithms is presented. Using this framework, we define a very general class of Fejér convergent algorithms and establish its convergence properties. We also introduce a new definition of approximations of resolvents, which preserves some useful featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2014-07, Vol.162 (1), p.133-153
1. Verfasser: Svaiter, Benar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new framework for analyzing Fejér convergent algorithms is presented. Using this framework, we define a very general class of Fejér convergent algorithms and establish its convergence properties. We also introduce a new definition of approximations of resolvents, which preserves some useful features of the exact resolvent and use this concept to present an unifying view of the Forward-Backward splitting method, Tseng’s Modified Forward-Backward splitting method, and Korpelevich’s method. We show that methods, based on families of approximate resolvents, fall within the aforementioned class of Fejér convergent methods. We prove that such approximate resolvents are the iteration maps of the Hybrid Proximal-Extragradient method, which is a generalization of the classical Proximal Point Algorithm.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-013-0449-7