Supramolecular charge transfer nanostructures

Supramolecular organization of π-conjugated chromophores into well defined nanostructures has gained much attention due to their promising role as active components in organic electronics. Charge-transfer (CT) nanostructures, in which aromatic donor (D) and acceptor (A) molecules are alternately arr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (4), p.13-1313
Hauptverfasser: Kumar, Mohit, Venkata Rao, K, George, Subi J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supramolecular organization of π-conjugated chromophores into well defined nanostructures has gained much attention due to their promising role as active components in organic electronics. Charge-transfer (CT) nanostructures, in which aromatic donor (D) and acceptor (A) molecules are alternately arranged, (mixed stack) have emerged recently as prospective candidates in this direction, because they provide inherent, uniform doping conducive for excellent conducting properties. The present perspective highlights the importance of charge transfer (CT) based non-covalent interactions, with emphasis on supramolecular design principles, for construction of various CT nano-architectures. The whole article is divided into three parts themed on the type of interactions used for obtaining CT assemblies. Through some of our recent results, we have attempted to highlight the latent potential of this nascent field. Furthermore, we have presented our perspectives on the major challenges in this field which is expected to broaden the scope of this subject. Supramolecular design principles for construction of charge transfer based nanostructures are reviewed for various applications and future prospects are highlighted.
ISSN:1463-9076
1463-9084
DOI:10.1039/c3cp54190h