Concentration-Dependent Chemical Expansion in Lithium-Ion Battery Cathode Particles
In this work, the effect of the concentration-dependent chemical-expansion coefficient, β, on the chemo-elastic field in lithium-ion cathode particles is examined. To accomplish this, an isotropic linear-elastic model is developed for a single idealistic particle subjected to potentiostatic-discharg...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2014-09, Vol.81 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the effect of the concentration-dependent chemical-expansion coefficient, β, on the chemo-elastic field in lithium-ion cathode particles is examined. To accomplish this, an isotropic linear-elastic model is developed for a single idealistic particle subjected to potentiostatic-discharge and charge conditions. It is shown that β can be a key parameter in demarcating the chemo-stress–strain state of the cathode material undergoing nonlinear volumetric strains. As an example, such strains develop in the hexagonal-to-monoclinic-phase region of LixCoO2 (0.37 ≤ x ≤ 0.55) and, subsequently, the corresponding β is a linear function of concentration. Previous studies have assumed a constant value for β. Findings suggest that the composition-generated chemo-elastic field that is based on a linear-β dramatically affects both the interdiffusion and the mechanical behavior of the LixCoO2 cathode particle. Because the chemo-elastic phenomena emanate in a reciprocal fashion, the resulting linear β-based hydrostatic-stress gradients significantly aid the diffusion of lithium. Thus, diffusion is accelerated in either electrochemical process that the cathode material undergoes. |
---|---|
ISSN: | 0021-8936 1528-9036 |
DOI: | 10.1115/1.4027833 |