A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation
Blackbody radiators are commonly used metrological standards of spectral radiance and radiation temperature according to Planck’s law of thermal radiation. In a well defined geometry of observation they also provide calculable irradiance for the calibration of radiation detectors. Here we describe t...
Gespeichert in:
Veröffentlicht in: | Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2014-08, Vol.35 (8), p.649-658 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blackbody radiators are commonly used metrological standards of spectral radiance and radiation temperature according to Planck’s law of thermal radiation. In a well defined geometry of observation they also provide calculable irradiance for the calibration of radiation detectors. Here we describe the metrological characterization of a vacuum variable-temperature blackbody to serve as a source standard for FIR- and THz radiation from 5 μm to 200 μm (60 THz to 1.5 THz). The key quantity of the characterization is the effective spectral emissivity of its cavity. This is determined by angular resolved directional spectral emissivity and directional spectral reflectivity measurements of its wall coating, Aeroglaze Z306. From the reflectivity measurements the diffusity is determined. Spectral emissivity and diffusity in combination with the well known cavity geometry allow the determination of the effective spectral cavity emissivity via a Monte-Carlo ray tracing simulation. |
---|---|
ISSN: | 1866-6892 1866-6906 |
DOI: | 10.1007/s10762-014-0056-1 |