Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations

We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C 1, α on the boundary; (ii) the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2014-09, Vol.39 (9), p.1694-1717
Hauptverfasser: Silvestre, Luis, Sirakov, Boyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C 1, α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C 2, α on the boundary; (iii) corresponding asymptotic expansions hold. This is an extension to viscosity solutions of the classical Krylov estimates for smooth solutions.
ISSN:0360-5302
1532-4133
DOI:10.1080/03605302.2013.842249