An Improved Source Model for Simulation Near-Field Strong Ground Motion Acceleration Time History
The key to near-field strong ground motion simulation based on stochastic finite fault method is to determine the spectrum of ground motion. We present an improved source spectrum model for simulation near-field strong ground motion acceleration time history. We combine Masudas source spectrum model...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-10, Vol.438-439 (Civil Engineering, Architecture and Sustainable Infrastructure II), p.1474-1480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The key to near-field strong ground motion simulation based on stochastic finite fault method is to determine the spectrum of ground motion. We present an improved source spectrum model for simulation near-field strong ground motion acceleration time history. We combine Masudas source spectrum model with scaling factor Hij to keep radiation energy conservation and reflect the energy decrease with frequency at low to mid frequencies. We calculate the Fourier amplitude spectrum Fa, accelerate response spectrum Sa, velocity response spectrum Sv and displacement response spectrum Sd of simulation time histories. By comparative analysis of the laws of spectrum values (Fa, Sa, Sv, Sd) with the variation of frequency or period, we discusses the effects of sub-fault dividing scheme, the method of determining scale factor and source spectrum model on spectrum values (Fa, Sa, Sv, Sd). The results show that sub-fault dividing scheme has slightly effect on the model presented in this paper, and the model enable to reflect the sink laws of source spectrum value in mid-to-low frequencies well. We demonstrate that the improved model is superior to other commonly used models. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.438-439.1474 |