Improving mobile network performance with two queueing buffer allocations of priority-based queueing scheme
As current mobile core network systems are expected to evolve into all-IP networks, packet switching will be a prerequisite for all mobile applications. Next-generation mobile networks, as envisioned by ITU-T, are packet-based networks capable of providing consistent and ubiquitous service to end us...
Gespeichert in:
Veröffentlicht in: | Wireless networks 2014-08, Vol.20 (6), p.1349-1367 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As current mobile core network systems are expected to evolve into all-IP networks, packet switching will be a prerequisite for all mobile applications. Next-generation mobile networks, as envisioned by ITU-T, are packet-based networks capable of providing consistent and ubiquitous service to end users, independent of the network, access technology, and device used. This study discusses the differentiated packet forwarding performance of four major types of mobile network traffic under the proposed mobile network priority-based queueing (MPQ) scheme with two queueing buffer allocations, namely dynamic queueing buffer (DQB) allocation and overflow queueing buffer (OQB) allocation. As different queueing buffer allocations are adopted to store arriving packets in DQB and OQB, the MPQ scheme shows different packet forwarding performance under these two methods. In this study, we use ns2 (Network Simulator version 2) as the simulation platform to simulate several scenarios. The simulation results show that the MPQ scheme is able to support differentiated packet forwarding behavior for mobile traffic with both DQB and OQB allocations in a mobile core network. Some issues were identified in the MPQ scheme with both DQB and OQB allocation, which will need to be addressed. |
---|---|
ISSN: | 1022-0038 1572-8196 |
DOI: | 10.1007/s11276-013-0681-y |