Microstructure and texture evolution of 6016 aluminum alloy during hot compressing deformation

Microstructure and texture in 6016 aluminum alloy during hot compression were researched with a uni- axial compression experiment. Through the electron back- scattered diffraction (EBSD) and X-ray diffraction (XRD) analysis technology, it is shown that the subgrain nucle- ation and recrystallization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2014-08, Vol.33 (4), p.404-413
Hauptverfasser: Zhang, Ji-Xiang, Zhang, Ke-Long, Liu, Yun-Teng, Zhong, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microstructure and texture in 6016 aluminum alloy during hot compression were researched with a uni- axial compression experiment. Through the electron back- scattered diffraction (EBSD) and X-ray diffraction (XRD) analysis technology, it is shown that the subgrain nucle- ation and recrystallization occur in 6016 aluminum alloy during hot compressing, and strong rolling textures such as (110) fiber texture, Brass, S, and Goss form. With the deformation passes increasing, (110) fiber texture, Brass and S are enhanced. In the heat preservation stage after deformation, recrystallization continues until heat preser- vation for 60 s, and a duplex microstructure of deformation and recrystallization grains is built. At the beginning of heat preservation, recrystallization grains with the Goss texture and random orientation are formed in original grains with S or Brass texture, which makes the volume fraction of S and Brass texture decrease. Then, the complex grain growth process makes the volume fraction of Brass, S, and Goss texture increase, while that of random orien- tation decrease.
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-014-0331-2