Note on Locating Pairs of Vertices on Hamiltonian Cycles
Given a fixed positive integer k ≥ 2, let G be a simple graph of order n ≥ 6 k . It is proved that if the minimum degree of G is at least n /2 + 1, then for every pair of vertices x and y , there exists a Hamiltonian cycle such that the distance between x and y along that cycle is precisely k ....
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2014-07, Vol.30 (4), p.887-894 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a fixed positive integer
k
≥ 2, let
G
be a simple graph of order
n
≥ 6
k
. It is proved that if the minimum degree of
G
is at least
n
/2 + 1, then for every pair of vertices
x
and
y
, there exists a Hamiltonian cycle such that the distance between
x
and
y
along that cycle is precisely
k
. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-013-1325-9 |