Note on Locating Pairs of Vertices on Hamiltonian Cycles

Given a fixed positive integer k ≥ 2, let G be a simple graph of order n  ≥ 6 k . It is proved that if the minimum degree of G is at least n /2 + 1, then for every pair of vertices x and y , there exists a Hamiltonian cycle such that the distance between x and y along that cycle is precisely k ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2014-07, Vol.30 (4), p.887-894
Hauptverfasser: Faudree, Ralph J., Lehel, Jeno, Yoshimoto, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a fixed positive integer k ≥ 2, let G be a simple graph of order n  ≥ 6 k . It is proved that if the minimum degree of G is at least n /2 + 1, then for every pair of vertices x and y , there exists a Hamiltonian cycle such that the distance between x and y along that cycle is precisely k .
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-013-1325-9