Unsupervised Learning for Robust Signal Classification

Cognitive Radio Networks (CRNs) have been proposed to increase the efficiency of channel utilization; presently the demand for wireless bandwidth is increased. Cognitive Radio Network can enable the sharing of channels among unlicensed and licensed users on a non-interference basis. An unlicensed us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-06, Vol.573 (Advancements in Automation and Control Technologies), p.429-434
Hauptverfasser: Maheswari, A. Uma, Latha, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive Radio Networks (CRNs) have been proposed to increase the efficiency of channel utilization; presently the demand for wireless bandwidth is increased. Cognitive Radio Network can enable the sharing of channels among unlicensed and licensed users on a non-interference basis. An unlicensed user (i.e., secondary user) should monitor for the presence of a licensed user (i.e., primary user) to avoid interfering with a primary user. However to get more gain, an attacker also called self-ish secondary user may copy a primary user’s signal to cheat other secondary users. Therefore a primary user detection method is needed to detect the difference between a primary user’s signal and secondary user’s signal. In this paper, unsupervised learning methods such as K-means and SOM techniques are used to classify the signals and also measure the performance parameters such as throughput, end-to-end delay, energy consumption, packet delivery ratio and collision rate of the channel.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.573.429