Self-Noise Analysis of Four-Electrode Microflow-Electrochemical Accelerometer Inspired by Hemodynamic Model

A fluid dynamics model of electrolyte in mircroflow inspired by hemodynamic model of aortic is proposed and applied in the self-noise analysis of four-electrode microflow-electrochemical accelerometer. Three-dimensional finite element model is established and invested through numerical simulation, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-11, Vol.461 (Advances in Bionic Engineering), p.984-992
Hauptverfasser: Li, Da Yi, Zhou, Qiu Zhan, Wang, Yu Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fluid dynamics model of electrolyte in mircroflow inspired by hemodynamic model of aortic is proposed and applied in the self-noise analysis of four-electrode microflow-electrochemical accelerometer. Three-dimensional finite element model is established and invested through numerical simulation, the variety of geometrical parameters on different location of electrode and varied time are considered, which can affect the microflow-electrochemical accelerometers self-noise. The result of numerical simulation indicates that, self-noise is related to electrode configuration as well as electrode geometrical parameters. In particular, convection-induced self-noise is correlated to variety of viscosity, and thermohydrodynamic self-noise is correlated to variety of diameter. Such a fluid dynamics model of electrolyte inspired by thermodynamics model can be also used for optimization of the self-noise.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.461.984