A Multi-Step Neural Control for Motor Brain-Machine Interface by Reinforcement Learning
Brain-machine interfaces (BMIs) decode cortical neural spikes of paralyzed patients to control external devices for the purpose of movement restoration. Neuroplasticity induced by conducting a relatively complex task within multistep, is helpful to performance improvements of BMI system. Reinforceme...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-11, Vol.461 (Advances in Bionic Engineering), p.565-569 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brain-machine interfaces (BMIs) decode cortical neural spikes of paralyzed patients to control external devices for the purpose of movement restoration. Neuroplasticity induced by conducting a relatively complex task within multistep, is helpful to performance improvements of BMI system. Reinforcement learning (RL) allows the BMI system to interact with the environment to learn the task adaptively without a teacher signal, which is more appropriate to the case for paralyzed patients. In this work, we proposed to apply Q(λ)-learning to multistep goal-directed tasks using users neural activity. Neural data were recorded from M1 of a monkey manipulating a joystick in a center-out task. Compared with a supervised learning approach, significant BMI control was achieved with correct directional decoding in 84.2% and 81% of the trials from naïve states. The results demonstrate that the BMI system was able to complete a task by interacting with the environment, indicating that RL-based methods have the potential to develop more natural BMI systems. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.461.565 |